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Abstract
In this project, we shall attempt to implement an
Attention U-net (Oktay et al., 2018) for semantic
segmentation of animal images. We will also
implement a classification branch from the U-Net
which will predict the label of the Images. Using
the attention framework, we hope to be able to
direct the neural network training in a way that it
focuses mostly on the important parts of the image
(which contain animals), and is able to correctly
ignore the non-important parts. We expect the
classifier to also perform well considering that
it will also benefit from the attention framework
implemented.

1. Introduction and Motivation
The U-Net is a popular architecture for image segmen-

tation tasks, and has been widely used in medical image
processing and segmentation(Ronneberger et al., 2015). The
architecture consists of a contracting path to capture context
and a symmetric expanding path that enables precise local-
ization (Ronneberger et al., 2015). The architecture may
be thought of as including an encoding region that captures
the most important “semantic” features in an image, thereby
reducing the dimensionality, and a decoding region, which
decodes this low (relatively) dimensional encoding to pro-
duce a different representation of the image (in our case a
segmentation map).

As an improvement to the original U-Net architecture,
the Attention U-Net introduces a novel attention gate (AG)
model that automatically learns to focus on target structures
of varying shapes and sizes. Models trained with AGs im-
plicitly learn to suppress irrelevant regions in an input image
while highlighting salient features useful for a specific task
(Oktay et al., 2018). Owing to the success of the Attention
framework for image segmentation, it has found extensive
use where precise localization is required.

1athrva@seas.upenn.edu (athrva) 2abhirags@seas.upenn.edu
(abhirags).

A more specialized architecture called the Spatial Chan-
nel Attention U-Net(SCAU-Net) is an example of the atten-
tion based variations of the U-Net architecture. SCAU-Net
has an encoder-decoder-style symmetrical structure inte-
grated with spatial and channel attention as plug-and-play
modules. The main idea is to enhance local related features
and restrain irrelevant features at the spatial and channel
levels(Zhao et al., 2020). The SCAU-Net has shown an
improvement of 1% on the Dice index and of 1.5% on the
Jaccard index for the gland dataset GlaS and CRAG(Zhao
et al., 2020).

Attention U-Net architectures have also been tried
with modified loss functions, for instance, Abraham et
al.(Abraham & Khan, 2018) suggest the use of a novel focal
tversky loss function for lesion segmentation. The network
with this modified loss function showed an improvement of
25.7% on the BUS2017 dataset, which is a relatively sparse
dataset with lesions occupying only about 4.84% of the total
image area.

Attention U-Net inspired architectures have also found
extensive use in non-medical image segmentation tasks,
this is apparent from the work done by Chen et al.(Chen
et al., 2021), who suggest the use of self-attention U-Nets
for Segmentation of Building Rooftops in Optical Remote
Sensing Images. Some related work advocating the use of
Attention U-Net frameworks are done by Luo et al.(Luo
et al., 2019), Li et al.(Li et al., 2020), Zhang et al.(Zhang
et al., 2021)

2. Dataset
We used subset of the Oxford IIIT Dataset for traiing and
inference. The total number of images used were 2550. The
images were randomly (uniformly) smapled from the over-
all dataset to ensure that this subset contained all the classes
(totalling 37).The Oxford IIIT dataset is a 37 category pet
dataset with roughly 200 images for each class. The images
have large variations in scale, pose and lighting. All images
have an associated ground truth annotation of breed, head
ROI, and pixel level trimap segmentation.
The reason for training on a subset of the complete dataset
was primarily the computational cost involved. Furthermore,
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in this project we wanted to make, testing novel concepts
a priority. Hence we tried to optimize our training time
and also spent time interpreting the model and it’s perfor-
mance. We introduced novel ideas for both the training and
interpretation.

3. Proposed Approach
The work done by Oktay et al.(Oktay et al., 2018),

illustrates that the Attention based implementation of the U-
Net performs better at segmentation tasks compared to the
original U-Net implementation. The U-Net architecture uses
skip connections that link the layers in the encoder region
to the layers in the decoder region. The skip connections
combine the spatial information from the downsampling
path with the spatial information from the upsampling path
to convey the important semantic spatial information which
is required to reconstruct the structure of the image in the
decoder section. However, this process also brings along
the poor feature representation from the initial layers. To
counter this Oktay et al.(Oktay et al., 2018) have proposed a
network that uses “attention gates” to retain the good feature
representation from the deeper layers and the good spatial
information from the shallow layers. We shall be using the
Attention U-Net for animal image semantic segmentation
and classification.

In our study we shall attempt to treat this problem as an
image generation task and instead of pixel-wise classifica-
tion, we shall try to make a generative model that translates
the input RGB images into their corresponding segmenta-
tion maps. For the classification part of our project, we shall
take the logits from the end of the encoder section of our
Attention U-Net, and use a global average pooling operation
to get an encoding of the labels which when activated using
a softmax layer will result in a one-hot probability distribu-
tion. The encoder captures the semantic information from
the image and hence is the most suitable part of the overall
architecture to siphon the logits from.

4. Methods
4.1. Data Pre-processing

The data made available in the Oxford IIIT dataset contains
RGB images of animals, and their corresponding segmen-
tation maps. In this project, the task can be thought of as
image translation from a form A, the RGB image, to a form
B, the segmentation map. The segmentation maps in the
Oxford IIIT dataset are normalized to have pixel values be-
tween 0 and 1. Next the segmentation maps are converted
into single channel images (makes image generation easier).
The different classes in the images are depicted as different
shades of gray. Figure 1 shows a sample of the input RGB
images and their corresponding segmentation maps.

Figure 1. Sample RGB Images and Segmentation Maps

4.2. The Attention U-Net : Conceptual Architecture

Figure 2. Sample RGB Images and Segmentation Maps

Figure 2. shows the conceptual architecture of the Attention
U-Net along with its components (notice the use of the
attention gate). An RGB image is fed into the network which
first encodes the image into a feature rich embedding and
then decodes it to produce the final image. Skip connections
between the encoder section and the decoder section are
added to transfer the spatial representation of the image and
additionally attention gates are added that take the input
from the skip connections and the previous deep layers to
combine the good spatial information from the initial layers
and the rich feature representation of the deep layers.

4.3. Components of the Loss function

In this section we define the loss functions used for training
the Attention U-Net.

4.3.1. SOME CONVENTIONAL LOSS FUNCTIONS

Commonly used loss functions for supervised image seg-
mentation include L1 and L2 loss for penalized regression,
and Berhu which combines L1 and L2 loss functions (Table
1) (Ming et al., 2021). In these equations, d represents the
estimated segmentation map and d* represents the ground
truth segmentation map.

L1 (d, d
∗) = L1 (d, d

∗) =
1

N

N∑
i=1

||di − d∗i ∥1 (1)

https://doi.org/10.1016/j.neucom.2020.12.089
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Furthermore, we define the L2 loss as follows,

L2 (d, d
∗) = L2 (d, d

∗) =
1

N

N∑
i=1

||di − d∗i ∥22 (2)

As a note to the reader, a commonly combination of the L1

and the L2 loss functions is the BerHu loss function, defined
as follows:

LBerhu (d, d
∗) =

{
|d− d∗| if |d− d∗| ≤ c
|d−d∗|2+c2

2c if |d− d∗| > c
(3)

We also define the cross-entropy loss here, which is formu-
lated below.

CE(y, ŷ) = −
Nc∑
i=1

yi log(ŷi) (4)

where y ∈ Rn is the ground truth and y ∈ Rn is the predic-
tion.

4.3.2. THE LABEL LOSS (CLASSIFICATION LOSS)

Our classification task is a classic example of multi-class
classification, where the network needs to assign on of the
37 classes to any given image. Since we used a composite
loss function which included a weighted summation of many
loss components, we decided to use the L1 loss between the
predicted probability distribution of labels and the actual
ground truth labels. This loss function for the labels is as
follows:

Ll =
1

N

N∑
n=1

||yn − efi(xn)∑Nc

j=1 e
fj(xn)

||1 (5)

4.3.3. THE GRADIENT LOSS

Consider that R is the input RGB image of dimensions
(M ×N) and d∗ is the corresponding ground truth segmen-
tation map of the same dimensions.
In general, we define a convolution operation using a kernel
K (of dimensions (m× n) as,

Oi,j =

M∑
k=1

M∑
l=1

d∗(i+k−1, j+ l−1)×K(k, l) = d∗⊛K

(6)
where i runs from 1 to M − m + 1 and j runs from 1 to
N −n+1. Let gx and gy be the horizontal and vertical gra-
dient kernels respectively. Then the horizontal and vertical
gradient of the ground truth segmentation map is given by,

Gx = d∗ ⊛ gx

Gy = d∗ ⊛ gy
(7)

Similarly, the x and y gradient of the generated segmenta-
tion map d is given by,

Fx = d⊛ gx

Fy = d⊛ gy
(8)

Now, we define the bounded gradient image of the ground
truth segmentation-map d∗, and the generated segmentation
map d as Gxy and Fxy respectively.

Gx,y = S

{
G2

x

max(G2
x) + ϵ

+
G2

y

max(G2
y) + ϵ

}

Fx,y = S

{
F 2
x

max(F 2
x ) + ϵ

+
F 2
y

max(F 2
y ) + ϵ

} (9)

where S is the sigmoid function and ϵ is a small positive
real number. Finally, the gradient loss may be formulated
as follows,

∇loss =

M−m+1∑
i=1

N−n+1∑
j=1

||Gx,y| − |Fx,y|| (10)

4.3.4. FORMULATING THE TOTAL LOSS

Let us define the total loss as G(d, d∗, y, y∗). We define
a1 ∈ R (representing the weights assigned to each of the
components in the total loss), L1 denoting the L1 loss and
L2 denoting the L2 loss. Then we can define the total loss
as,

G(d, d∗, y, y∗) = ∇loss × (L1(d, d
∗) + L2(d, d

∗))

× (1 + CE(d, d∗)) + a1Ll

(11)

The total loss can therefore be viewed as a composite loss
function that attempts to minimize multiple aspects of the
error between the ground truth segmentation map and the
generated segmentation map.

5. Interpretation of the Total Loss function
In this section we define the loss functions used for training
the GAN. A composite loss function was used for training.
The loss function consisted of the following components.

1. The Gradient loss, which is a novel implementation.
Adding this component of the loss ensures that the
edges are conserved in the generated images. Based on
our training process, it sped up the training process sig-
nificantly. It is in general seen that using loss functions
like L1 or L2 alone in training generative frameworks
can result in blurred looking images, that don’t neces-
sarily preserve the sharpness of the edges. Adding the
gradient loss penalizes ”blurness” and encourages the
model to be more confident in it’s predictions.
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2. L1 Loss between the ground truth segmentation map
and the generated segmentation map. This compo-
nent of the loss minimizes the ”difference” between
the ground truth segmentation map and the generated
segmentation map.

3. L2 Loss between the generated segmentation map and
the ground truth segmentation map. Adding this loss
speeds up the initial learning process when there is a
large difference between the generated segmentation
map and the ground truth segmentation map.

4. Cross-entropy loss between ground truth segmentation
map and the generated segmentation map. This loss
has the additional effect of penalizing the incorrect
pixels. It was found that this loss sped up the initial
training process.

6. Results and Discussion
In this section we demonstrate the results obtained dur-
ing the training process. We shall also discuss the various
metrics tracked during training and attempt to explain the
patterns therein.
We shall begin with the training losses. During the training
process, we recorded the L1 loss, L2 loss, the Gradient loss
and the Label loss. Figure (3) shows the decrease in the
different components of the loss function throughout the
training process. We see that the training loss decreases

Figure 3. Total loss on the training dataset

rapidly initially and then reachs an inflection point at epoch
43. Thereafter, the decrease in the loss is gradual. Figure (4)
shows the gradient loss for the training dataset. We observe
a similar trend in the gradient loss. The exception here being
that there is another increase in the error decay at around
epoch 155, after which the error decay rate increase again.
We now investigate the L1 and L2 losses on the training
dataset. Figures (5),(6) show the L1 and L2 loss during the

Figure 4. Gradient loss on the training dataset

training process. The L1 loss seems to follow a near linear

Figure 5. L1 on the training dataset

downward trend throughout the training process. Generally,
it is seen in generative networks that most of the loss de-
crease happens in the first few epochs, after which, the loss
decay is gradual. The linear downward trend observed here
may signify that adding the Gradient loss in the loss formu-
lation may have a local-optima avoiding effect. The trend
followed by the L2 is more of a conventional trend, where
we seen a steep and sharp decline in the loss in the initial
epochs, and thereafter a plateauing of the loss with decrease
following a small negative slope. Finally, we now infer
trends from the label loss which is an indication of the clas-
sification accuracy. Figure (7) shows the label/Classification
loss on the training dataset. We see that the initial decrease
in the classification loss is very gradual. This can be at-
tributed to the fact the that in the initial epochs, the gradient
loss, L1 and L2 losses dominate. Eventually, at epoch 150,
we see a sharp decline in the classification loss.
We can make similar observations on the validation loss
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Figure 6. L2 on the training dataset

Figure 7. Classification/Label loss on the training dataset

curves. The validation loss was also recorded throughout
the training process. The validation loss is ideally thought
to give an unbiased estimate of the performance of the
model. Figure (8) shows the total loss curve on the vali-
dation dataset. We see a similar trend in the total validation
loss as was seen in the total training loss. The exception
here is that there exists a step-like decrease in the total vali-
dation loss. We see that the validation loss settles at around
epoch 60. Figure (9) show the Gradient loss for the vali-
dation dataset. The gradient loss on the validation dataset
also show the same trend as was seen in the training dataset.
We see a step-like decrease in the loss, with an accelerated
decrease in the loss occurring after epoch 150. Figures (10)
show the L1 for the validation dataset. We see that the L1

loss again follows a near-linear trend. Interestingly, we see
that the slope of decrease does not seem to flatten toward the
end of the training. This seems to indicate that additional
training can result in a further decrease in the loss. Finally,
figure (11) shows the classification loss on the validation

Figure 8. Total loss on the validation dataset

Figure 9. Gradient loss on the validation dataset

dataset. The trend here is similar to the trend in the training
dataset, the initial decline in the classification loss is gradual,
which then becomes steep at around epoch 150. Overall,
we see that the designed loss pipeline seems to minimize
all the components on the total loss cumulatively as well
as individually. Figure (12) shows the progression of the
generated image throughout the training process. It can be
seen that we were able to obtain good results.



CIS 581 : Computer Vision and Computational Photography Final Project Report

Figure 10. L1 loss on the validation dataset

Figure 11. Classification/Label loss on the validation dataset

7. Evaluating the quality of the encoded logits
We attempted to evaluate the quality of the encoded logits
from the lowermost layer of the encoder. Doing this gives
us an indication of the performance of the model in segrega-
tion the various species of animals. Furthermore we are also
able see the difference in activation given inputs of different
classes.
Originally, the logits were of 37× 16× 16 shape. This is a
very high dimensional representation of the data. We there-
fore decided to reduce the dimensionality of the encodings
before proceeding forward. The following is our pipeline
for interpreting the model.

7.1. Principal Component Analysis on the Encoded
Logits

We used Principal Component Analysis (PCA) to reduce
the dimensionality of the encoded logits. PCA is a form
of dimensionality reduction framework that estimates the

directions of maximum variance in the data. PCA can be
estimated using eigenvalue decomposition or using singular
value decomposition (SVD). In our case we used the SVD
variant of PCA. PCA may also be thought of as a linear
autoencoder. The input to PCA is the data itself (in our case
the encoded logits) and the output as the principal compo-
nents.
It was found that the first 900 principal components ex-
plained 97% of the variance of the encoded logits. We were
therefore successful in decreasing the dimensionality of the
encoded logits from 9472 to 900 (a 10.5 times reduction).
We then used the reduced logits for our further analysis.

7.2. Gaussian Mixture Models with the EM Algorithm

In order to show that the Attention U-Net we developed
responded to different inputs differently (and is thus capa-
ble of class distinctions), we used the Gaussian Mixture
Model (GMM) clustering using the Expectation Maximiza-
tion (EM) algorithm. We would cluster the reduced logits
(from PCA) and indicate the respective inputs that were the
source of the encodings. In this case the clusters formed will
indicate the activation of the Attention U-Net architecture
to different inputs.

7.2.1. SELECTING THE NUMBER OF CLUSTERS FOR
GMM

In order to carry out a meaningful GMM clustering and by
extension a meaningful model activation analysis, we need
to select the right number of GMM clusters. An incorrect
choice of the clusters can lead to a bias in our interpretation
of the model’s activations to different inputs.
For this task we used two important metrics Akaike in-
formation criterion (AIC) and the Bayesian information
criterion (BIC). For a detailed analysis of these criteria,
the reader is referred to the work done by (Stoica & Selen,
2004) and (Claeskens & Hjort, 2008). In our analysis, we
varied the number of clusters in the GMM model and esti-
mated the AIC and BIC. Figures (13),(14) show the plots
for AIC and BIC. We further defined a new criterion for the
selection of optimal number of clusters, which we define as
the Combined Information Criterion (CIC).

CIC =
2×AIC ×BIC

AIC +BIC
(12)

Figures (13),(14),(15) show the plots for AIC, BIC and
CIC, for various tested GMM models with different num-
ber of clusters. Note that a lower value of AIC and BIC is
more preferable. We see that the AIC reaches it’s lower-
most point at number of clusters = 5, and there-
after rises. Therefore according to the AIC plot, we see that
the optimal number of clusters is 5. Consider figure (15)
which shows the plot for the BIC criterion. We see that the
BIC criterion is minimum at number of clusters =
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Figure 12. Progression of Generated Image during the Training Process

Figure 13. Akaike information criterion (AIC) vs Number of clus-
ters

2. In order to obtain a number of clusters that minimizes
both the AIC and BIC, we define the CIC criterion, which
by definition gives us the cluster number which minimizes
the AIC and BIC criterion. From figure (15) we see that
the optimal number of clusters (Optimal number of
clusters = 4) using the CIC criterion.

7.2.2. RESULTS OF GMM CLUSTERING

In this section, we demonstrate the results of the GMM clus-
tering (with number of clusters = 4) on the PCA reduced
logits. Figure (16) shows the results of GMM clustering.
We observe that the model is able to produce different ac-
tivations for different classes. We can also see that the
clusters are not very well defined, this essentially hints at
the difficulty of learning encodings which can,

1. Generate Segmentation maps when decoded.

Figure 14. Bayesian information criterion (BIC) vs Number of
clusters

2. Reflect the class/label difference of the inputs.

Consider figure (17), which shows one sample of inputs
from each of the clusters of the reduced logits. We can
see that the animals corresponding to each of the clusters
are visually very different. This is to be expected, since
the activation of the model for each of these animals is
semantically different.
From this analysis, we have proven the following

1. The model is capable of distinguishing between very
similar looking animals

2. The inner-most encoded logits of the model are cap-
turing the classes successfully, and are also capturing
enough spatial and feature representation to be able to
decode and generate a segmentation map.
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Figure 15. Combined information criterion (CIC) vs Number of
clusters

Figure 16. Results of GMM clustering of the Reduced Logits (x-
axis : Principal component 1, y-axis : principal component 2)

8. Conclusion and Remarks
In this project we successfully implemented the Attention
U-Net model for image semantic segmentation and classi-
fication. In the process we introduced novel ideas like the
Gradient loss and the Combined Information Criterion.
The former is a gradient error minimizing loss function that
encourages a model to preserve the edges of the generated
images. It was found that adding this loss function, po-
tentially, has the benefit of pulling the model out of local
optima. This loss function was used in conjunction with
more conventional loss functions like L1 loss and L2 loss.
We further did a model interpretation study to verify that our
model was capable to produce appropriate activations for
semantically different inputs. For this we first extracted the
encoded logits from the model and conducted a Principal
Component Analysis (PCA) on the model for dimensionality
reduction. We found that we were able to reduce dimen-
sionality by more than 10.5 times. These dimensionally
reduced logits, which we call reduced logits, were then
fed to a Gaussian Mixture Model (GMM) for clustering. In

Figure 17. Results of GMM clustering of the Reduced Logits (x-
axis : Principal component 1, y-axis : principal component 2)

order to get the optimal number of clusters, we introduced
another novel idea, the Combined Information Criterion
(CIC) which is a combination of the Akaike information
criterion (AIC) and the Bayesian information criterion
(BIC). We were able to show that the higher dimensional
representation of encodings for semantically different inputs
lived sufficiently far in higher dimensional space.

9. Scope for Improvements
The following improvements can be made on the model and
the training pipeline :

1. The model can further be trained on the complete
dataset and it’s performance can be calculated.

2. Different configurations of the Gradient Loss may be
tested and their performances can be compared.

3. A different method of model interpretation can be im-
plemented for example, Local Interpretable Model-
Agnostic Explanations (LIME) and Shapley values
(SHAP).

10. Timeline
The timeline that we decided for our project is shown in
figure (18). We were able to complete all planned aspects
of the project as well as introduce some novel ideas.

Figure 18. Project Timeline
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Extra : Network Architecture
See the Attention U-Net architecture shown in figure (19),
the green nodes depict the outputs of the model. The first
green node is at the end of the encoder and represents the
logits used for classification the second green node is at
the end of the decoder and represents the predicted single
channel segmentation map.
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Figure 19. Extra : Full Attention U-Net Architecture


