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Abstract

Depth perception is the visual ability to perceive
the world in 3D, and is an essential step for tack-
ling vision problems in fields such as robotics, au-
tonomous driving, and tasks involving 3D recon-
struction. In the case of monocular visual systems—
increasingly in the case of real-world applications—
depth perception is difficult because stereoscopic
approaches are unavailable, and depth has to be
inferred from a single image. Here we test two su-
pervised approaches for learning the correspond-
ing depth maps to an input RGB image: a baseline
UNET with Mean Square Error loss, and a novel
GAN model which uses the same UNET architec-
ture as the generator and is ultimately also eval-
vated with MSE loss. After training on around
4000 examples and evaluating on a validation set,
we found that the GAN model, with a loss of
0.0005, outperforms the baseline UNET model
whose loss is 0.035.

1. Introduction and Motivation

Intuitively, depth perception is the sense of how close we
are to the various objects in our field of view. Since the opti-
cal images created by visual systems—whether the animal’s
eyes or the camera—are inherently two-dimensional, depth
perception is a matter of inference from two-dimensional
images to a three-dimensional perception of the world.

Traditional depth perception techniques assume a
binocular visual system (i.e., two lenses) and rely on what
are called stereoscopic cues, the comparison of two images
of the same scene from slightly different angles. In recent
years, the field has concentrated on the more difficult
task of monocular depth perception, where depth cues are
limited to whatever information is in a single image, such
as relative size of objects, lighting, texture, elevation, and
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any other visual patterns. The focus on monocular depth
perception has come about in part because it is increasingly
the case in real world applications that only one camera is
available to capture images.

Here, we we compare the performance of two monocular
depth perception systems trained and validated on the KITTI
Vision Benchmark dataset. Our baseline approach is the
standard UNET architecture trained with MSE loss, while
the more novel approach makes use of a GAN, where the
generator is the same UNET from the baseline and the
discriminator is a Patch-GAN trained from scratch.

2. Related Work

A recently published review article in 2021 described
previous approaches to monocular depth perception (Ming
et al 2021). Previous work has made use of a range
of contemporary deep learning techniques, including
deep image networks such as VGG-16, AlexNet, and
ResNet in supervised learning regression tasks, where skip
connections and up-convolutions, akin to a UNET structure
are used to create depth maps.

Depth Perception can be viewed as an image generation
task, which is often accomplished using an encoder-decoder
architecture that outputs generated images. Previous studies
noted that training encoder-decoder networks with L1 or L2
penalties often leads to blurry images (Pathak et al.,[2016)
(Zhao et al., [2017). This is believed to happen because such
naive loss functions do not penalize the networks on the joint
configuration of the output pixels. A promising alternative
approach makes use of GANs (Pathak et al.2016). GANs
are a special type of neural network architecture composed
of two deep nets, called a generator and a discriminator. The
generator is generally an encoder-decoder architecture that
produces an image (given either a latent vector as an input or
another image as an input). The discriminator discriminates
between the synthetic images generated by the generator and
the ground truth images. Ideally, in the training process, the
two networks improve together (i.e. the generator gets better
at producing images similar to the ground truth, and the



Submission and Formatting Instructions for ICML 2021

discriminator gets better at discriminating between synthetic
images and the true images). GANSs, therefore, propose an
adaptive loss function that can impose coherence conditions
on the output images. It is also believed that combining a
high-level adaptive loss of a GAN with a low-level L1 loss
may boost performance even further. We propose the use
of GANSs for the monocular depth perception task, since it
requires that the global contextual information be extracted
from the input view.

3. Dataset

KITTI (Karlsruhe Institute of Technology and Toyota
Technological Institute) is one of the most popular datasets
for applications in mobile robotics and autonomous driving.
It consists of hours of traffic scenarios recorded with a va-
riety of sensor modalities, including high-resolution (1392
x 512) RGB, grayscale stereo cameras, LiDAR, and a 3D
laser scanner. We use the annotated depth maps dataset
alongside available monocular RGB raw data, which comes
in the form of image sequences (around 100 images per set)
taken from a camera mounted to a car. The depth maps—the
ground truth in our case—number around 100,000 and are
14GB, but due to practical resource and time constraints,
we trained on only 3824 image-depth map pairs. Since
we are using deep learning approaches, our feature set is
not defined explicitly. We instead learn the features using
convolutional network layers.

4. Problem Formulation

It is worth stating again that the depth perception
performed by animals’ visual systems is not fundamentally
the result of learning to see how depth “looks” in a given
image. Rather, animals have two eyes, and the depth
of various objects in a visual field can be inferred from
the subtle differences in the images received by the two
eyes, whose separating distance is known. When-as is
the case with many real-world examples—a visual system
only creates images from a single vantage point, traditional
strategies in animals’ visual systems fail as a guiding
metaphor and an alternative approach of learning depth
directly from a single image is necessary.

Here, we will explore a supervised machine learning
approach, where the system learns how depth “looks” by
considering many examples of images whose ground truth
depth map is known. Specifically, the model input is a
2D RGB image, and the output is a depth (distance from
the camera to the surface) prediction for every pixel in the
input image: a depth map. Convolutional deep learning
approaches will learn various representations of the input
image which reflect the depths in the ground truth. One

aspect of the machine learning task which is somewhat
atypical is that the model output is not a single regression
or a distribution over categories but an estimate of depth for
every pixel in the input image—in essence another channel.

5. Methods

5.1. Data Pre-processing

The data made available in the KITTI dataset contains
RGB images of the scene, the corresponding projected raw
LIDAR scans and the odometry data. In this project, the
task can be thought of as image translation from a form
A, the RGB image, to a form B, the depth-map. As stated
previously, the data provided in the KITTI dataset includes
the projected point clouds which have to be converted into
the respective depth-maps manually. This is also known
as depth filling and is a complete research field in it’s own
right. For our purposes, we use the method suggested in
(Ku et al.,|2018) to fill the sparse projected LIDAR scans.
The Depth inpainting process is guided by the RGB images.
It could be thought of as laying the projected LIDAR scans
on the RGB image and using the dense structure of the RGB
image for depth filling.

[
N

Figure 1. Depth filling pipeline

Images were also downscaled to 416x128 due to VRAM
concerns on Google Colaboratory.

5.2. Baseline Model: Pretrained UNET

As depth maps require pixel-level predictions, it follows
that many approaches follow an encoder-decoder like struc-
ture. One such approach is the UNet, which has been used
for semantic segmentation (Ronneberger, 2017)). We chose
this UNet structure for our baseline, as an implementation is
readily available in PyTorch with open-source code (Github
repository). Since we require our values to be clamped be-
tween 0 and 1 for skimage RGB format, we elected to keep
the sigmoid activation function in the UNet model.

To change from a classification task to a regression task,
we require a change of loss function. Commonly used loss
functions for supervised depth perception are log depth and
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Berhu which combines an L1 and L2 loss (Table 1)|[1]. In
these equations, d represents the estimated depth and d*
represents the ground truth depth. However, we elected to
use the mean square error loss as a baseline due to ease of
availability in PyTorch.

Table 1. Loss functions

Name Formulation
p)
Lilogd) | L(d,d") =% ¥ 57 - % (T, w:)
|d — d*| if
. |[d—d*| <c
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We trained the model for 10 epochs on Google Colabo-
ratory, using 60% of the data in the training set, 20% for
validation, and 20% for testing, with batch sizes of 16. We
used Adam optimizer with a learning rate of le-5, a step
size of 10, and ~y of 0.1, and report the loss at each batch as
well as at the end of training.

5.3. GAN Loss Function

In this section we define the composite loss function
used for training the GAN. The loss function consisted of
the following components.

1. The Gradient loss, which is a novel implementation.
Adding this component of the loss ensures that the
edges are conserved in the generated images. We found
that it sped up the training process significantly.

2. Cross-entropy loss between the discriminator predicted
patches and the adversarial ground truths. This com-
ponent of the total loss allows the generator to learn
based on the feedback provided by the discriminator.

3. L, Loss between the discriminator predicted patches
and the adversarial ground truths. This component
of the total loss also allows the generator to receive
feedback signal from the discriminator, additionally, it
allows for a more fine grained control of the discrimi-
nator induced changes in the generator’s training.

4. L1 Loss and MSE Loss between the generated depth
map and the ground truth depth map. This component
of the total loss is a direct lossy i.e., it has a direct
bearing on the generated depth map. Adding this loss
speeds up the initial learning process when both the
generator and the discriminator are untrained. We now
present a mathematical formulation of the loss func-
tions used in the GAN training process.

5.3.1. THE GRADIENT LOSS

Consider that R is the input RGB image of dimensions
(M x N) and Z is the corresponding ground truth depth
map of the same dimensions.

In general, we define a convolution operation using a kernel
KC (of dimensions (m x n) as,

M M
Oij =YY I(i+k-1,j+1-1)xK(k,1) = I&K (1)
k=11=1

where ¢ runs from 1 to M — m + 1 and j runs from 1 to
N —n+1. Let g, and g, be the horizontal and vertical gra-
dient kernels respectively. Then the horizontal and vertical
gradient of the ground truth depth map is given by,

Ga::I®gx

2
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Similarly, the  and y gradient of the generated depth map
T is given by,
F, T = ZA- ® gz
. 3)
Fy=1T®g,
Now, we define the bounded gradient image of the ground
truth depth-map Z, and the generated depth-map Z as G,
and F;, respectively.

G2 G,
oy =5 max(G2) + max (G2)

2 F? “)
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where S is the sigmoid function.

Finally, the gradient loss may be formulated as follows,

M—m+1 N—n+1

Viess = Z Z ||Gx7y‘ - |F17:l/|| &)
-1 =1

5.3.2. FORMULATING THE GENERATOR LOSS

Let wus define the generator loss as
G(Z,I,R,Gry, Fry, D, 144,) which we define as
G for concise notation. We define a1, as, az, aq € R (repre-
senting the weights assigned to each of the components in
the total loss), L1 denoting the L1 loss and Lo denoting the
L5 loss. Finally, 1,4, and 0,4, are the adversarial ground
truths. Then we can define the total Generator loss as,

G =a1 X Vigss + a2 X Ll(j-vI) + az X LQ(j-vI)

R (6)
+ays x C(D(Z,R), Ladw)

where C is the Cross-entropy loss.
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5.3.3. FORMULATING THE DISCRIMINATOR LOSS

The discriminator loss is given by the following equation,
D = Ly(D(Z,R), Lago) + L2(D(Z,R), 0uar) ()

This loss function has the effect of teaching the discriminator
that the real ground truth depth map corresponds to the 1,4,
tensor, and the fake/generated depth map corresponds to the
0,4, tensor.

The GAN’s training process then, can be described by a
combined minimization problem depicted in equation (8),

min w = (mgln G, min D) (8)

6. Experiments and Results
6.1. UNet

The UNet training was overall successful, with the loss
decreasing steadily (Figure Zh). However, much of the
gain occurred in the first epoch, before the loss decreased
linearly. The linear decrease in loss of the validation can
be also observed, as the validation loss was only recorded
from the first epoch onward (Figure |Zb). For final losses,
the validation set performed the best at 0.0346, followed by
training set at 0.0369, and testing set at 0.0408 (Table [2).
As such, we can observe that the model has not overfit on
the training set, in fact it performs the best on the validation.
Losses are comparable between the three sets.

Examples of UNet outputs of the the training and valida-
tion set were sampled at the end of the 1st, 5th, and 10th
epochs of training (Figure 5). We can see that the UNet
depth outputs are very noisy, and appear to lack detail over-
all. We cannot really discern individual objects very well,
and can only discern very large elements in the image like
the road and the outline of the trees. However, it can be
seen that the UNet is capable of learning depth, with the
background being properly identified, and increase in green
intensity with epochs to indicate that the UNet is perceiving
greater and greater depth with each epoch (Figure [T0). Al-
though the results have some promise, it appears that this
baseline method is unable to recapture the original depth
map accurately.

Table 2. Loss values for methods

METHOD TRAIN  VALIDATION  TEST
UNET, MSE  0.0369 0.0346 0.0408
GAN 0.0061 0.0005 0.0047

6.2. GAN Training and Results

The GAN training process requires a balance between
the training of the Generator and the Discriminator. If ei-
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Figure 2. UNet Training and Validation Losses per batch

ther model overpowers the other by a significant amount,
the learning can essentially come to a halt. We therefore
employed a progressive learning process which included
changing the relative learning rates and relative update fre-
quencies of the Generator and Discriminator during train-
ing. We illustrate this using the MAE loss curve in Figure
3. At point A, the learning rate of the Discriminator was
halved and the update frequency was changed to once in
five batches. The reason for making this change was that the
discriminator was outperforming the generator significantly,
and causing unstable behavior in the training framework.
If left unchecked, this could lead to divergence; where the
discriminator severely outperforms the generator causing
the learning process to halt. As is evident from Figure 3,
this had a positive effect on the training process (there was
a notable drop in the loss). The point B denotes an inflec-
tion point where the loss starts to plateau. After this point
any further drop in the loss would require a corresponding
decrease in the discriminator loss. This implies that both
the agents (i.e., the generator and discriminator) need to im-
prove in adversarial training for the overall loss to decrease
further. From an optimization perspective, this could signify
an escape from a local optimum. From here onward, in all
GAN loss curves, we show points A and B as a reference.

Figures 4 and 5 show the MSE as well as total genera-
tor loss. Recall that the total generator loss is a composite
quantity which includes the gradient loss defined in section
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Figure 3. Generator MAE loss for the training dataset
5.3.1. We observe similar trends in Figures 4 and 5, with the

exception that the decrease in the losses at point A are not
as drastic. We now discuss the validation loss curves for
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Figure 4. Generator MSE loss for the training dataset
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Figure 5. Total Generator loss for the training dataset

the GAN. The validation loss was tracked throughout the
training process, and the effects of reducing the discrimina-
tor’s learning rate and update frequency are apparent from
the loss curves. Figure 6 shows the MAE loss curve for the
validation data. A similar and perhaps more drastic decrease
is seen at point A which reaches a final inflection point at B,
after which the loss reaches a plateau. Figures 7 and 8 show
the generator’s MSE loss and total loss on the validation
dataset. We can observe a similar trend in Figures 7 and 8,
where the training rate is accelerated by tweaking the dis-
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Figure 6. Generator MAE loss for the Validation dataset
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Figure 7. Generator MSE loss for the Validation dataset
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Figure 8. Generator total loss for the Validation dataset

criminator’s learning rate and update frequency. We further
notice that the GAN reaches a much lower overall MSE loss
as compared the the UNet model. Note that the architecture
used here in the generator is also the UNet architecture. This
choice was made to make comparison easier. This further
implies that the difference in results is a direct consequence
of the type of training and the loss functions employed (ad-
versarial with gradient loss for GAN and static MSE for
UNet baseline).

7. Discussion

Firstly, our baseline model, the UNet, performed less than
optimally. It can be observed that the depth maps produced
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Figure 9. Output for the UNet on the 1st epoch

by the model output are quite noisy, and the objects in the
environment are not captured properly in the depth map.
This is especially problematic, as one primary use of depth
maps in modern technology is for object detection based on
proximity. Previous works have made modifications to the
UNet structure, introducing additional convolutional layers

in the skip connections (He et al.,|[2018) or training on an
additional gradient stream (Li et al, 2017). Additional

considerations include the choice of loss function. As
mentioned previously, there exists mathematical challenges
where the loss can be unstable, thus leading to formulations
based on combined losses (Ming et al, 2021). Lastly, it
may also be the case that the UNet structure itself is not
well-suited for the task, as its original design was intended
for semantic segmentation, and thus its structure was not
tuned for fine-grained pixel-level predictions. The task may
be better suited for a dedicated generative model. As such,
to address these innovations, we chose to experiment with a
GAN while combining a variety of loss functions including
a loss function based on the gradient of the image.

The GAN performed better than our baseline model in
all the recorded metrics. We attribute this primarily, to
the adversarial training and the composite loss function.
Figure (10) shows the images generated using the GAN. It
is clear that the depth is correctly estimated in almost all
cases. Owing to the addition of the gradient loss function,
the generator produces distinct edges between objects in the
depth-maps. The adversarial training allows the generator to
learn not only an average representation of the depth-maps,
but the underlying distribution itself, from which the depth
maps have been sampled (at least in the domain of the data
samples).

From an implementation perspective, we were able to
deduce important insights during the GAN training process.
Primarily the balance on the relative performances of the
agents in adversarial training (generator and discriminator).
We further investigated the effects of asymmetric learning
rates assigned to the generator and the discriminator. We
found that such an approach was beneficial for our case.
However, we think that the specifics of the training process
are a heuristic for our specific problem, and while the prin-
ciple of unequal learning rates and update frequencies is
helpful, the specifics of the training process are only appli-
cable to our training process. Furthermore, we found that
the training process depends heavily on the choice of the
discriminator and generator models.

7.0.1. A NOTE ON THE GRADIENT LOSS

The gradient loss proved to be extremely beneficial to
the training process. To that end, we would like to elaborate
further on it’s effects on the produced images. The gradient
loss function penalizes difference in the gradients between
the generated depth-map and the ground truth depth map.
An obvious effect of this is that it encourages the generator
to learn the edges/boundaries of the depth maps correctly.
In a depth-map, perhaps the second most important property
to predict after the pixel intensities are the edges, which im-
ply the ability of the generator to recognize multiple objects.

As a note on the implementation side of the gradi-
ent loss, it is very important to adjust the relative weight
(a;) assigned to the gradient loss. This needs to be done to
ensure that the gradient loss does not overpower the other
components of the total loss function.
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Figure 10. GAN Outputs spanning the entire training process

8. Conclusion

For the task of monocular depth perception, adversarial
training improves performance of a generative Convolu-
tional Neural Network. For this project, we used a relatively
small dataset of 3500 image pairs. We were nonetheless able
to prove the superiority of adversarial training for monoc-
ular depth estimation. With that said, there are further im-
provements possible. Both in the training and design of
the baseline model and the GAN. In the future, we will
investigate the models using a larger set of training data, as
well as test the models on the NYU Vision dataset which
is another popular benchmarking dataset. For the UNet
baseline, we will revisit with implementations of the BerHu
loss, as well as replicate experimental models presented
in previous work. For the GAN model, we intend to shift
from a pix2pix type implementation to a cycleGAN type
implementation. The advantage of this is that the training
data does not need to be pairwise (by treating depth and
RGB to be two representations of images).
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